Statistics Review Part 1

Random Variables
and their Distributions



Random Variables

random variables (RV) are variables whose outcome is
subject to chance.

— That is, we don’t know what value the variabld vake until we
observe it. Examples:

« Outcome of a coin toss; roll of a die; sum of two dice.
* Value of the S&P 500 one year from tod
« Starting salary at your first job after graduation.

The actual value taken by a RV is calledoaicome.

Usually, we'll use capital letters to denote a random variable,
and lower case letters to denote a particular outcome.

— Example: rolling two dice. Call the sum of theugs rolledX. A
particular outcome might be= 7.



Discrete vs. Continuous RV's

« Random variables are said todiecrete if they can
only take on a finite (or countable) set of values.
— Outcome of a coin toss: {Heads, Tails}
— Outcome of rolling a die: {1, 2, 3, 4, 5, 6}
— Gender of the next person you meet: {Male, Female}

« Random variables are said todmmtinuous if they
take on a continuum (uncountable Iinfinity) of vaue

— height of a person
— Starting salary at your first job after graduation



Probabillity

« Associated withevery possible outcome of a RV is a

probability. The probability of a particular outcome tells us
how likely that outcome is.

* Pr(X=Xx) denotes the probabillity that random variakle
takes valuex. You can think of PX = x) as the proportio

of the time that outcomx occurs in the “long run” (in man
repeated trials).

 Examples

— For a coin toss, PXEheads)=Pr(X=tails)=0.5 (or, 50%).

— for a pair of dice whose sumXs Pr(X=7)=0.167 (or,
16.7%, or 1/6). (Try it with a hundred dice rolls.)



Properties of Probabillities

Probabilities are numbers
Probabilities are between 0 and 1.
If Pr(X =x) =0,

— then outcome X = X never occurs.

— eg, sum of 2 dice roll: x=13
If Pr(X =x) =1,

— then outcome X = x always occurs.

If two outcomes x,y are mutually exclusive (meaning x and y cannot
both occur at the same time) then:

— Pr(X=xand X=y)= 0

— PriX=xorX=y)=Pr(X=x)+Pr(X=y)

— eg, sum of 2 dice roll: Pr(X=7 or X=8)=Pr(X=7)+Pr(X=8)=0.167+0.139=0.306

If two outcomes X,y are mutually exclusive and collectively
exhaustive (meaning no other outcomes are possible) then:

— PriX=xorX=y)=Pr(X=x)+Pr(X=y) =1

— eg, coin toss: x=heads, y=tails



Probabillity Distributions

 Every RV has a probabillity distribution

A probability distribution describes the set of all possible outcomes of a
RV, and the probabilities associated with eachiptessutcome.

This is summarized by a function, callegrabability distribution
function (pdf).

For a discrete RV, the pdf is just a list of allsgible outcomes, and the
probability that each one occurs.

Example: coin toss

— PrX=heads) = PriX = tails) = %2
Example: rolling a single die

— PriX=1)=PrK=2)=...=PrK=6) =1/6

Note: in each case, the sum of probabilities of all possible outcomesis 1.



Cumulative Probabillity Distribution

An alternate way to describe a probability disitibn is the
cumulative distribution function (cdf).

The cdf gives the probability that a RV takes hugéess than or
equal to a given value, i.e., PX(< X)

Outcome (value of roll of single die)
1 2 3 4 5 6
pdf 1/6 1/6 1/6 1/6 1/6 1/6
cdf 1/6 1/3 1/2 213 5/6 1

(Draw a picture)
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The case of continuous RVS

« Because continuous RVs can take an infinite nurobegalues, the
pdf and cdf can’t enumerate the probabilities aheaf them.

* |nstead, we typically describe the pdf and cdhgdunctions.

* For the pdf of a continuous RV, the “d” stands‘fdensity”
Instead of “distribution” (this is a technical p9in

e Usual notation for the pdf f(x)

e Usual notation for the cdf i5(x) = PrX <x)

« Example, the uniform distribution oved,1]: f(X)=1; F(X)=x.
« Example: the normal distribution:

()= exp[— (X_‘;)ZJ

2710 20

FOO=[ f(t)ot
(draw them)



Graphing pdfs and cdfs of
continuous RVs

Because pdfs and cdfs of continuous RVs can be complicated
functions, in this class we’ll just use pictures to represent them

For both, we plot outcomes (i.&),on the horizontal axis, and
probabilities (i.e.f(x) or F(x)) on the vertical axis

Since probabilities are weakly positive, the pdf is we.
positive, and the cdf is a wealincreasing function

The cdf ranges from zero to one

The pdf typically has both increasing and decreasing segments

— Thearea under the pdf gives the probability théfalls in an
Interval

— Hence the total area under the pdf must be one

(draw some pictures: two dice, normal pdf & cdf, tail &
Interval probabillities)



Describing RVs

There are lots of ways to describe the behaviar of
RV

Obviously, the pdf and cdf do this

— In fact, they tell us “everything” we might want to know
about a R}

But sometimes we only want to describe one or two

features of a probability distribution

One feature of interest Is tleepected value (or
mean) or a RV

Another Is a measure of the dispersion of the RV
(how “spread out” the possible values are, e.g., th
variance)



Expected Values

Think of theexpected value (or mean) of a RV as the long-
run average value of the RV over many repeated trials

You can also think of it as a measure of the “middle” of a
probability distribution, or a “good guess” of the value of a
RV

DenotecE(X) or uy

More preciselyE(X) is aprobability-weighted average of all
possible outcomes of X

Example: rolling a die

— (1) =f(2) =f(3) =f(4) =f(5) =f(6) = 1/6

—  E(X) =1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6)
= 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6
=21/6 = 3.5

Interpretation?



More about E(X)

 The general case for a discrete RV

— Suppose R\ can takek possible valueg,, X,, ... , X, with
associated probabilitigs, p,, ..., p, then

E(X) = Z B %

 The general case for a continuous RV involves an integral
* We can think oE(X) as a mathematical operator (like +, -, *,

/).
— Itis alinear operator, which means we can pass it through
addition and subtraction operators

— That is, If a and b are constants ahgd a RV,
E(a+ bX) =a+ bE(X)



Variance & Standard Deviation

Thevariance and standard deviation measure dispersion, or how “spread out” a
probability distribution is.

A large variance means a RV is likely to take a wide rangaloks

A small variance means a RV is likely to take a narrow rafgalues. That is,
likely values are clustered together

DenotedVar(X) or o
Formally, if RV X takes one ok possible valuexl, Xoy wee X

Var(X) = E[(X - 11, J| = Zp i

Note:Var(X) = E[(<~ 57 % [E(C- 15T (why?)
Becausé/ar(X) is measured on an awkward scale (the square of the s¢gle of
we often prefer thetandard deviation of X:

o, =4/Var(X)

which is measured on the same scalX¥ as
A useful formulaVar(a + bX) = b?Var(X)




Variance & Standard Deviation
Example: a single die

Example: variance of rolling a die
—  Recallf(1) =f(2) =f(3) =f(4) =f(5) =f(6) = 1/6 and=(X) = 3.5
— Var(X) = (1 -3.5%/6 + (2-3.5)/6 + (3—3.5J/6 + (4 — 3.5)/6
+ (5 —3.5%/6 + (6 — 3.5¥6
~ 2.92
— oy~ 1.71



Samples and Population

A random variable’s probability distribution, exgted
value, and variance exist on an abstract level.

They arepopulation quantities (we’ll define this soon).

That is, we don’t generally know what a random
variable’s pdf/cdf is, nor do we know its expectadlie
or variance.

As econometricians, our goal isto estimate these
guantities.

We do that by computingatistics from asample of data
drawn from thepopulation.

Our goal aseconometriciansisALWAYStolearn
about a population from sample information.



Two Random Variables

* Most interesting gquestions in economics invol@r2
more) variables
— what'’s the relationship between education and earnings?
— what's the relationship between stock price and profits?

 We describe the probabillistic relationship between
two (or more) random variables using three kinds of
probability distributions:
— the joint distribution
— marginal distributions
— conditional distributions



The Joint Distribution

 Thejoint distribution of discrete RVsXandY is the
probability that the two RVs simultaneously take on certain
values, sayxandy: That is, PrK=x, Y =Yy), like a cross-tab.

« Example: weather and commuting time.

— Let C denote commuting time. Suppose commuting time ealoig
(C=1) or shortC = 0).

— LetWdenote weather. Suppose weather can be\Wias 1) or foul vV = 0).

— There are four possible outcomeSs:H0,W=10), C=0,W=1),
(C=1,W=0),C=1,Ww=1).

— The probabilities of each outcome define the jdistribution ofC andW.

Foul Weather (W=0) Fair Weather (W=1) Total

Short Commute (C=0) 0.15 0.25 0.4
Long Commute (C=1) 0.55 0.05 0.6
Total 0.7 0.3 1




Marginal Distributions

 WhenX)Y have a joint distribution, we use the temmar ginal
distribution to describe the probability distribution Xfor Y alone.

 We can compute the marginal distributionXdirom the joint
distribution ofX,Y by adding up the probabilities of all possible

outcomes wher¥ takesi% ticular value. That isyYitakes one ok
possible valU&(X =x) = 2 PIX =X,Y =Y,
i=1
Foul Weather (W=0) Fair Weather (W=1) Total
Short Commute (C=0) 0.15 0.25 0.4
Long Commute (C=1) 0.55 0.05 0.6
Total 0.7 0.3 1

The marginal distribution of weather is in blue €liarginal
distribution of commuting time is in yellow.



Conditional Distributions

The distribution of a random variabYeconditional on
another random variabktaking a specific value is
called theconditional distribution of Y given X.

The conditional probability that takes valug whenX
takes valuex is written PrY =y | X = x).

In general, Pr(Y = v. X = x
Pr(Y = y|X = X) = <Pr()2/’:x) )

Intuitively, this measures the probability thvat y and
X=X, given that X = x.

— Example: what's the probability of a long commugjieen that
the weather is foul? (Next slide)



Example: Commuting Time

Foul Weather (W=0) Fair Weather (W=1) Total
Short Commute (C=0) 0.15 0.25 0.4
Long Commute (C=1) 0.55 0.05 0.6
Total 0.7 0.3 1

What's the probability of a long commuiC = 1) given foul
weather W= 0)?

We know the joint probability is Rg(= 1,W = 0) = 0.55

The (marginal) probability of foul weather is RftE 0) = 0.7 (this
IS Vancouver, after all)

So given that the weather is foul, the probabiy long
commute is

PrC=1|W=0) = PrC=1,W=0)/ Pri?v= 0)
Z0.55/0.7
~0.79

Notice that PIC=1 |[W=0) + PrC=0 |[W=0) = 1. why?




Conditional Expectation

The mean of the conditional distributionYogiven X is called the
conditional expectation (or conditional mean) of Y given X.

It's the expected value o, given thatX takes a particular value.

It's computed just like a regular (uncondition@Xpectation, but
uses the conditional distribution instead of thegmaal.

— If Ytakes one ok possil?(le valuey, Y,, ..., ythen
E(Y X =x)=2y Py =y | X =x)

=1

Example: in our commuting exampkeippose a long commute
takes 45 minutes and a short commute takes 30 minutes. What'’s
the expected length of the commute, conditiondoohweather?
What if weather is fair?

— Foul weather: 30*0.15/0.7 + 45*0.55/0.7 = 41.79ues
— Fair weather: 30*0.25/0.3 + 45*0.05/0.3 = 32.5 ntes



The Law of Iterated Expectations

* There is a simple relationship between conditi@mal
unconditional expectations. We call it taev of
Iterated expectations.

 Intuitively, anunconditional expectation is just a
weighted average conditional expectations where the
weights are the probabillities of the outcomes orciv
we are conditioning.

— Example: the mean height of adults in Canadansighted
average of the mean height of men and the meahthafig
women, where the weights are the proportions of ameh
women in the population.

— Example: the mean (expected) commuting time isgus
weighted average of the mean (expected) commutimg in
foul weather and the mean (expected) commuting iimfair
weather. Here, the weights are the probabilitie®off and fair

weather, respectively.



The Law of Iterated Expectations,

continued

Formally, for a RVY and discrete R that takes one oh
possible values, the law of iterated expectations is:

E(Y)= 2 E( 1% = x)PrX = x)

More generallyE(Y) = E[E(Y]|X)]
THISISA VERY USEFUL RESULT!!

Back to the commuting time example:
— E(commuting time) =
E(commuting time | foul weather)*Pr(foul weather)
+ E(commuting time | fair weather)*Pr(fair weather)
=41.79* 0.7 + 32.5*0.3
= 39 minutes



Conditional Variance

We called the mean of the conditional distribution the conditional ettt

Likewise, we call the variance of the conditional distributioncthralitional
variance.

It tells us how dispersed the distribution of a RV is, conditionarather RV
taking a specific value.

Again, it's calculated just like the unconditional variance, only@ptace the
unconditional mean by the conditional mean, and use conditional probabidlities f
the weights.

Formally, if Y takes one 05 possible values:
Var(Y|X =x)=>[y —E(Y | X =x)]P{Y =y, | X =x)

Example: the conditional Variance of commuting time

— Var(commuting time | foul weather)
= (45 - 41.79+0.55/0.7 + (30 — 41.79)0.15/0.7 = 37.88 minutés

— This implies the conditional standard deviatiof.5 minutes which is quite “small”
compared to the conditional mean — why?



Independence

Quite often, we’re interested in quantifying the relationship betvieo
RVSs.

— Infact linear regression methods (the focus of this course) dtyetkas.

When two RVs areompletely unrelated, we say they areependently

distributed (or simplyindependent).

— If knowing the value of one RV (s&§) providesabsolutely no infor mation
about the value of another RV (gY), we say thaX andY are independer

Formally, X andY are independent if the conditional distributionYajiven
X equals the marginal distribution ®f

PriY=y| X=x) = Pr(¥=y) (*)
Equivalently, X andY are independent if the joint distributionXfandY
equals the product of their marginal distributions:
PriY=y, X=X) = Pr(Y=y)Pr(X=X)
—  This follows immediately from (*) and the definition of the conditional

distribution: Pr(X =x Y =
Pry =y| X =X) = (Pr(x ,:x) y)




Covariance

A very common measure of association between twe IR their

covariance. It iIs a measure of the extent to which to RVs vao
together.”

Cov(X,Y) = oyy = E[(X =) (Y —1y)]
In the discrete case, Xtakes one omvalues and takes one ok
values, we ha\ K

Cov(X,Y) :sz:(xj — 1 Ny = 14, )Pr{X = XY= y,)

i=1 j=1

Interpretation:

— if XandY are positively correlateas(, > 0) then wherX > u, we also hav&’ >

ty, and wherX < u, we also havey < uy (in expectation). Tyhis meadsandyY
tend to move “in the same direction.”

— Conversely, iby, < 0 then wherX > x4, we haveY < u, and wherX < u, we

haveY > uy (in expectation). This meadsandY tend to move “in opposite
directions.”



A Caveat

Note: Iif 6y, = 0, thisdoes not mean thaX and
Y are independent (except In the special case
whereX andY are both normally distributed).

However, the converse Is trueXfandY are
iIndependent, theo,, = 0.

This tells us that independence Is a “stronger”
property than zero covariation.

covariance Is only a measurelofear
association — s¥ andY can have aexact
nonlinear relationship and zero covariance.



Covariance and Correlation

An unfortunate property of the covariance measure of
association is that it is difficult to interpret: it is measlire
units of X times units ofY.

A “unit free” measure of association between to RVs is the
correlation betweerX andy:

__CovX)Y) _ o

P Nar(XVar(Y) o,o,

— Notice that the numerator & denominator units eanc
Corr(X,Y) lies between -1 and 1.

If Corr(X,Y) =0 then we sa)XandY areuncorrelated.

Note that ifCov(X,Y) = 0 thenCorr(X,Y) = 0 (and vice
versa).

Corr(X,Y)



Example: Weather and Commuting
Time

E(weather) = 0*0.7 + 1*0.3 = 0.3 (remember 1 = fa@ather)
E(commuting time) = 39 minutes

Var(weather) = 0.21 (check this!!)

Var(commuting time) = 54 (check this too!!)

Cov(weather, commuting time) = (0 - 0.3)(30 - 39)*0.15
+ (0-0.3)(45- 39)*0.55 + (1- 0.3)(3(-39)*0.2¢
+ (1 -0.3)(45 - 39)*0.05 =0.405-0.99 — 1.575 + 0=21..95
— when weather is good, commuting time is shortet tle
magnitude of this is hard to inte_r%eg

Corr(weather, commuting time) = 02T 54 =-0.579

— this is easier to interpret: - 0.579 Is quite ag& negative
number on a scale of -1 to 1. Hence there Is aginegative
correlation between weather and commuting time ot
correlation is not perfect (-1).



Some Useful Formulae

e Suppose thaX, Y, andV are RVs and, b, andc are constants.

Then:
E(a+bX +cY)=a+bu, +cu,

Var(aX +bY)=a’02 +b%0Z + 2abo,,
Ev2)=02+ 4
Cov{a+bX +cV,Y)=bao,, +ca,
E(XY) = Oxy T Hx My



